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Summary

Genomewide searches for loci influencing complex hu-
man traits and diseases such as diabetes, hypertension,
and obesity are often plagued by low power and inter-
pretive difficulties. Attempts to remedy these difficulties
have typically relied on, and have promoted the use of,
novel subject-ascertainment schemes, larger sample
sizes, a greater density of DNA markers, and more-so-
phisticated statistical modeling and analysis strategies.
Many of these remedies can be costly to implement. We
investigate the utility of a simple statistical model for
the mapping of quantitative-trait loci that incorporates
multiple phenotypic or diagnostic endpoints into a gene-
mapping analysis. The approach considers finding a lin-
ear combination of multiple phenotypic values that max-
imizes the evidence for linkage to a locus. Our results
suggest that substantial increases in the power to map
loci can be obtained with the proposed technique, al-
though the increase in power obtained is a function of
the size and direction of the residual correlation among
the phenotypes used in the analysis. Extensive simulation
studies are described that justify these claims, for cases
in which two phenotypic measures are analyzed. This
approach can be easily extended to cover more-complex
situations and may provide a basis for more insightful
genetic-analysis paradigms.

Introduction

Modern geneticists have accepted the challenge of lo-
calization of genes that influence traits and diseases of
all types. The tools and basic approaches for this task
are numerous and varied, but one of the most widely
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used involves a total genome scan with anonymous DNA
markers. With this approach, a large number of related
individuals are sampled who are thought to be segre-
gating for genes that influence a particular disease or
trait. These families are then genotyped for numerous
DNA markers that are known to be associated with
various landmark positions (i.e., loci) along the genome.
This marker genotype information is then evaluated for
statistical linkages or associations with putative disease-
susceptibility or trait-influencing loci, in an effort to
“map” (i.e., locate the rough genomic position of) those
loci. Subsequent genotyping and analysis can be pursued
not only to refine the position of those loci but also
ultimately to determine gene sequences and mutations
that causally influence the trait or disease of interest.
Although this description is an oversimplification, this
basic approach has been used with great success to map
loci influencing simple (Mendelian) diseases, such as cys-
tic fibrosis and neurofibromatosis, that are determined
by a single locus whose relationship with the disease or
trait is largely unequivocal.

Extensions and implementations of genome-scan tech-
nologies to more-complex traits and diseases have been
plagued by numerous problems. “Complex” traits and
diseases, such as hypertension, diabetes, and obesity, are
influenced by numerous genetic and nongenetic factors,
each of which may contribute to a trait or disease in
only a small way. As such, the detection or characteri-
zation of any one of the relevant genetic factors might
be obscured or confounded by the influence of others.
Thus, the genetic dissection of complex traits and dis-
eases may require study designs and research protocols
that are more sophisticated than those used in the anal-
ysis of simple Mendelian genetic traits and diseases
(Lander and Schork 1994). One set of traits that are
particularly difficult to deal with are those that exhibit
continuous or metrical variation in the population at
large. Such traits are often complex in nature, in that
multiple genetic and nongenetic factors contribute to
their population-level variation.

Perhaps the greatest challenge in the mapping of loci
for quantitative traits is combating the necessarily large
sample size that one must use to detect locus effects on
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Table 1

Observed Type I Error Rates (with 1 df t-Test) for Standard
Univariate Haseman-Elston Test, Based on 1,000 Simulations

TYPE I ERROR RATE FOR NOMINAL a �

SAMPLE SIZE

AND TYPE

OF VALUEa .200 .100 .050 .010 .001

25:
TCV �.86 �1.32 �1.71 �2.50 �3.48
ER .206 .106 .0535 .0075 .0005
ECV �.90065 �1.338 �1.733 �2.458 �3.591

50:
TCV �.85 �1.30 �1.68 �2.40 �3.26
ER .202 .103 .053 .012 .001
ECV �.858 �1.310 �1.720 �2.461 �3.352

100:
TCV �.85 �1.29 �1.66 �2.36 �3.17
ER .212 .109 .054 .010 .002
ECV �.8790 �1.323 �1.701 �2.293 �3.499

250:
TCV �.84 �1.28 �1.64 �2.33 �3.09
ER .212 .111 .065 .014 .002
ECV �.8895 �1.339 �1.763 �2.442 �3.647

500:
TCV �.84 �1.28 �1.64 �2.33 �3.09
ER .189 .094 .049 .012 .0005
ECV �.799 �1.252 �1.685 �2.355 �3.180

a Sample size is no. of sib pairs; TCV � standard one-sided t-test
critical value, ER � estimated error rate for critical value from sim-
ulations, and ECV � estimated critical value from empirical distri-
bution of test statistics gathered from simulations.

the trait that are small or moderate in size (Blackwelder
and Elston 1982; Eaves 1994; Allison and Schork 1997).
Many investigators have shown that power can often be
substantially increased by adopting different analytic
strategies (e.g., see Fulker and Cherny 1996), sampling
large sibships (Todorov et al. 1997), sampling pheno-
typically extreme sibling pairs (Eaves and Meyer 1994;
Risch and Zhang 1995, 1996; Allison 1996), making
use of multiple marker data (Fulker et al. 1995; Olson
1995), and a variety of other methods (Allison and
Schork 1997). However, one method whose power has
been only minimally explored is the use of multivariate
phenotypes in mapping strategies.

In this paper we evaluate a method for multivariate
linkage analysis originally proposed by Amos et al.
(1990). We show that, under some circumstances, such
multivariate analysis can substantially increase the
power of quantitative-trait locus (QTL)–mapping stud-
ies. We begin, however, with a brief review of approaches
to the use of multivariate data in human linkage analysis.
Work of relevance to QTL-mapping studies involving
model organisms includes that of Jiang and Zeng (1995)
and Korol et al. (1995).

Some Approaches to Multivariate Phenotypic Data in
Linkage Analysis

Multiple phenotypes are frequently included in gene-
mapping studies. Several authors have pointed out that
effective use of multivariate phenotypic measures can
potentially enhance the power of linkage studies (Amos
et al. 1986, 1990; Elston 1991; Amos and Liang 1993;
Blangero et al. 1993; Schork 1993; Markel and Corley
1994; Dupuis et al. 1995; Jiang and Zeng 1995; Korol
et al. 1995; Boomsma 1996), and several approaches
have been taken to handle such multivariate data.

Use of Several Univariate Analyses

One approach is to run a separate univariate linkage
analysis on each phenotype. Examples can be found in
articles by Reed et al. (1995), Duggirala et al. (1996),
and Norman et al. (1995). The obvious advantage to
this approach is its simplicity of execution and inter-
pretation. Unfortunately, there are two major disadvan-
tages. First, it does not make use of the multivariate
structure of the data and capitalize on its potential power
advantages. Second, the use of multiple phenotypes can
increase the studywise type I error rate if not accounted
for properly (Lander and Schork 1994). Although this
inflated type I error rate could be managed with Bon-
ferroni-type corrections, such corrections are likely to
be overly stringent and to result in an increased type II
error rate, because the phenotypes are very unlikely to

be independent (Hochberg and Tamhane 1987; Allison
and Beasley 1998).

Methods Based on a Priori Composites

A second approach is to combine the multiple phe-
notypes into a single composite score. Although this may
initially seem to be a radical proposal, testing for linkage
to dichotomous phenotypes (i.e., affected vs. unaffected)
is quite familiar when the dichotomous phenotype is a
“syndrome” (e.g., schizophrenia); and a syndrome is
nothing but a composite of several phenotypic meas-
urements (albeit a potentially nonlinear composite) (Bai-
ley 1973).

Using a composite in linkage analysis requires that
one have some reasonable method for determining a
good way to combine multiple variables. There are sev-
eral ways in which one could select a composite prior
to conducting a linkage analysis. For example, Jones
(1971) and Grove (1994) developed methods for ex-
tracting the linear composite of several variables that
maximizes the broad-sense heritability when twin data
are available. Analogously, in the dichotomous situation
(i.e., affected vs. unaffected), McGuffin et al. (1993) de-
scribed the use of twin data to derive the syndrome def-
inition that yields the maximum heritability. Similarly,
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Table 2

Observed Type I Error Rates for Bivariate (Linear-Combination)
Haseman-Elston Test, Based on 1,000 Simulations and Assumption
of .00 Residual Correlation between Traits

SAMPLE SIZE AND

TYPE OF VALUEa

TYPE I ERROR RATE AT NOMINAL a �

.200 .100 .050 .010 .001

Residual Correlation between Traits � .00

25:
TCV �.86 �1.32 �1.71 �2.50 �3.48
ER .443 .263 .153 .030 .002
ECV �1.534 �1.986 �2.337 �2.978 �5.121

50:
TCV �.85 �1.30 �1.68 �2.40 �3.26
ER .436 .259 .148 .036 .006
ECV �1.480 �1.936 �2.278 �2.969 �3.435

100:
TCV �.85 �1.29 � 1.66 �2.36 �3.17
ER .467 .278 .156 .037 .004
ECV �1.504 �1.895 �2.265 �2.815 �3.722

250
TCV �.84 �1.28 �1.64 �2.33 �3.09
ER .466 .285 .171 .042 .006
ECV �1.541 �1.928 �2.284 �2.945 �4.324

500:
TCV �.84 �1.28 �1.64 �2.33 �3.09
ER .414 .235 .127 .036 .006
ECV �1.376 �1.814 �2.202 �2.821 �4.003

Residual Correlation between Traits � .50

25:
TCV �.86 �1.32 �1.71 �2.50 �3.48
ER .364 .186 .100 .023 .001

ECV �1.271 �1.716 �2.092 �2.888 �4.674
50:

TCV �.85 �1.30 �1.68 �2.40 �3.26
ER .336 .180 .105 .019 .001

ECV �1.232 �1.710 �2.029 �2.587 �3.289
100:

TCV �.85 �1.29 �1.66 �2.36 �3.17
ER .391 .218 .111 .031 .005

ECV �1.339 �1.714 �2.109 �2.716 �3.787
250:

TCV �.84 �1.28 �1.64 �2.33 �3.09
ER .370 .207 .106 .019 .001

ECV �1.300 �1.679 �1.987 �2.650 �3.206
500:

TCV �.84 �1.28 �1.64 �2.33 �3.09
ER .349 .205 .112 .025 .002

ECV
�1.306 �1.674 �2.003 �2.689 �3.149

Residual Correlation between Traits � �.50

25:
TCV �.86 �1.32 �1.71 �2.50 �3.48
ER .51 .31 .18 .035 .005
ECV �1.66 �2.04 �2.36 �3.13 �4.18

50:
TCV �.85 �1.30 �1.68 �2.40 �3.26
ER .51 .33 .19 .04 .005
ECV �1.65 �2.02 �2.33 �2.98 �3.79

(continued)

Table 2 (continued)

SAMPLE SIZE AND

TYPE OF VALUEa

TYPE I ERROR RATE AT NOMINAL a �

.200 .100 .050 .010 .001

100:
TCV �.85 �1.29 �1.66 �2.36 �3.17
ER .51 .29 .17 .035 .003
ECV �1.54 �1.94 �2.21 �2.88 �3.59

250:
TCV �.84 �1.28 �1.64 �2.33 �3.09
ER .51 .31 .17 .039 .005
ECV �1.56 �1.95 �2.88 �2.81 �3.51

500:
TCV �.84 �1.28 �1.64 �2.33 �3.09
ER .52 .32 .19 .046 .005
ECV �1.60 �1.95 �2.32 �2.87 �3.32

a Definitions are as in table 1.

Boomsma (1996) showed that, using twin data, one can
compute genetic-factor scores to represent an underlying
genetic predisposition toward increasing values on sev-
eral variables. These factor scores can then be used as
the phenotype in subsequent linkage analysis. Boomsma
(1996) showed that, under certain circumstances, the use
of such factor scores resulted in substantially greater
power than the use of the individual phenotypic scores.

One limitation of the approaches above is that the
composite that maximizes an overall heritability, or that
best correlates with a latent genetic factor, may not be
the optimal composite for mapping a particular locus
(Eaves et al. 1996). Pedigree discriminant analysis (Gol-
din et al. 1980; Zlotnik et al. 1983; Amos et al. 1986)
determines the composite that best fits major-gene trans-
mission. Similarly, Blangero and Konigsberg (1991) of-
fered a method of multivariate segregation analysis that
maximizes the strength of a hypothesized major-gene
effect and suggested that the resulting composite might
be useful as a dependent variable for linkage analysis.
Although these methods may provide an optimal linear
composite for the largest “major gene,” they may not
provide the optimal composite for other QTLs of inter-
est. This is because the covariances induced among a set
of phenotypes by one locus may be different from the
covariances induced among the same set of phenotypes
by a different locus (Eaves et al. 1996).

Methods Based on Simultaneous Linkage to Multiple
Variables

Another set of approaches simultaneously includes
several separate phenotypes in a single linkage analysis.
Some of these are based on the generation of a composite
score, whereas others are not.
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Table 3

Power (i.e., 1 � Type II Error Rate) of Univariate Test versus Bivariate Test

MODEL AND a2jM p(a)b mAA
c mAa

c maa
c

RESIDUAL

CORRELATION

POWER OF BIVARIATE TEST/POWER OF

UNIVARIATE

TEST, WHEN TYPE I ERROR �

.200 .100 .050 .010

Dominant:
.100 .1 0 .85 .85 0 .295/.279 .157/.148 .081/.082 .019/.012

.5 .271/.284 .161/.150 .066/.080 .015/.014
�.5 .395/.284 .242/.156 .161/.088 .036/.019

.2 0 .69 .69 0 .276/.273 .161/.148 .082/.077 .026/.017
.5 .250/.284 .147/.136 .068/.069 .023/.018

�.5 .381/.274 .244/.145 .148/.081 .043/.017
.250 .1 0 1.47 1.47 0 .519/.444 .353/.270 .185/.171 .064/.040

.5 .428/.422 .272/.255 .148/.147 .045/.036
�.5 .642/.396 .479/.246 .61/.140 .117/.035

.2 0 1.20 1.20 0 .484/.405 .302/.252 .175/.140 .059/.033
.5 .416/.416 .266/.244 .146/.144 .051/.041

�.5 .713/.417 .550/.260 .444/.149 .164/.038
Additive:

.100 .1 0 .79 1.58 0 .290/.280 .156/.152 .082/.080 .026/.017
.5 .292/.295 .167/.155 .089/.082 .022/.019

�.5 .367/.271 .222/.151 .147/.077 .039/.020
.100 .2 0 .59 1.18 0 .279/.277 .130/.144 .072/.072 .023/.016

.5 .267/.262 .145/.145 .074/.079 .024/.021
�.5 .432/.292 .272/.169 .177/.092 .048/.019

.250 .1 0 1.36 2.73 0 .469/.429 .319/.250 .192/.154 .068/.040
.5 .428/.418 .280/.261 .146/.152 .046/.036

�.5 .652/.418 .484/.247 .364/.144 .133/.041
.2 0 1.02 2.04 0 .528/.425 .342/.275 .215/.167 .088/.049

.5 .434/.415 .279/.245 .143/.149 .052/.039
�.5 .697/.416 .558/.255 .422/.150 .161/.041

Recessive:
.100 .1 0 0 3.35 0 .234/.255 .126/.134 .064/.071 .014/.014

.5 .259/.266 .149/.154 .074/.082 .013/.018
�.5 .226/.262 .125/.128 .068/.063 .015/.014

.101 .2 0 0 1.71 0 .264/.257 .129/.137 .068/.066 .017/.13
.5 .247/.259 .134/.129 .051/.064 .014/.011

�.5 .294/.259 .167/.138 .103/.067 .028/.014
.250 .1 0 0 5.81 0 .227/.310 .112/.163 .044/.079 .006/.013

.5 .246/.316 .128/.164 .046/.078 .010/.012
�.5 .221/.317 .111/.169 .046/.079 .002/.009

.2 0 0 2.95 0 .375/.405 .216/.232 .119/.141 .031/.032
.5 .376/.385 .227/.228 .113/.130 .028/.031

�.5 .380/.373 .240/.221 .145/.122 .030/.025

a Variation explained by biallelic locus for both traits.
b Allele frequency for biallelic locus; .p(A) � 1 � p(a)
c Mean for both traits, for genotype.

Schork (1993)

Schork (1993) extended Goldgar’s (1990) variance-
components approach in several ways, including the use
of multiple phenotypes, initially put forth by Lange and
Boehnke (1983), and showed that, under some circum-
stances, power could be increased substantially by con-
sideration of multivariate phenotypes (also see Schork
et al. 1994). Schork also showed that, within the vari-
ance-components approach, the degree of residual cor-
relation among the phenotypes can also dramatically
affect power.

Eaves et al. (1996)

Eaves et al. (1996) proposed a multivariate linkage
approach that simultaneously incorporates both the phe-
notypic and genetic-marker information into a single
structural equation model (SEM). Eaves et al.’s SEM
approach essentially models the cross-sib covariances as
a function of the estimated degree to which alleles are
shared identical by descent at points along the genome.
Through simulation, they show that the method is ca-
pable of detecting multiple QTLs with pleiotropic ef-
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Figure 1 Simulation results examining the effect of the residual correlation between two traits on the power to detect a major locus (allele
frequency � .20) with pleiotropic effects on two traits. A fully informative marker at distance of 1 cM from the trait locus was assumed. Figure
1 depicts the power of the proposed bivariate mapping method as a function of the residual correlation with the locus accounting for 50% or
25% of the variance of each trait.

fects. The relative power of this multivariate approach
was not explicitly evaluated.

Moldin and Van Eerdewegh (1995) and Bonney et al.
(1988)

Moldin and Van Eerdewegh (1995) and Bonney et al.
(1988) used a regressive model to conduct joint segre-
gation and linkage analysis with both a continuous and
dichotomous trait simultaneously. The method appeared
to work well in settings involving oligogenes. As pre-
sented, it had several limitations, including the fact that
it (a) could accommodate only two phenotypic variables
at a time and (b) assumed that, conditional on the QTL,
one variable had no causal influence on the other. In
addition, its power was not explicitly evaluated in com-
parison with other techniques.

Amos et al. (1990) and Amos and Liang 1993)

Amos et al. (1990) and Amos and Liang (1993) ex-
tended the Haseman and Elston (1972) linkage model
for sib pairs to multiple traits, as explained below, il-
lustrating the method by applying it to apolipoprotein

and cholesterol levels in sib pairs from a large family
that had many members diagnosed with heart disease.

The Amos et al. (1990) Model

The Amos et al. (1990) model to be studied herein is
described within the context of a sib-pair study (Schork
and Xu 1997). The procedure involves the estimation
of a linear combination of the phenotypes that maxi-
mizes the linkage information (Amos et al. 1990). It is
a simple extension of the well-known Haseman-Elston
model (Haseman and Elston 1972). Let yi,j be the ith
standardized phenotype ( ,)v for the jth siblingi � 1
( or 2) within a sib pair. Then the model can bej � 1
written as

2 ˆ[a (y � y ) � ...a (y � y )] � b � b p � e ,1 1,2 1,2 ,1 ,2 0 1v v v

(1)

where is an estimate of the fraction of alleles shared,p̂

at a locus, between sibs, b0 is an intercept term, b1 is a
regression parameter that essentially quantifies the de-
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Figure 2 depicts power of the proposed bivariate mapping method as a function of the effect of a locus on two traits (i.e., the locus was
assumed to influence the two traits in an equivalent manner). Three scenarios were investigated, each assuming a different residual correlation
between the two traits.

gree to which variation at the locus in question explains
variation in the phenotypes, and e is an error term. The
a terms are estimable quantities and represent “load-
ings” on the phenotypic variables, loadings whose rel-
ative magnitudes could, conceivably, be interpreted as
an indication as to how strongly each variable is influ-
enced by the locus in question. Estimates of the a terms
can be obtained in a variety of ways but should be es-
timated simultaneously with both the intercept, b0, and
the allele-sharing–effect parameter, b1. We chose to es-
timate the a1, b0, and b1 terms by determining the values
that maximize the evidence for linkage. Since un-b ! 01

der linkage, we find the ai that minimizes b1. This can
be achieved by assuming different values for the a’s,
fitting the regression in equation (1) via least squares,
to obtain b0 and b1, and finding that a parameterization
that results in the most “negative” b1 value. It is nec-
essary to place some constraint on the sum of the a1, so
that the model is identifiable. For convenience, we
choose the arbitrary constraint that . We alsovS � 1i�1

assume that the phenotype values yij have been stan-
dardized to avoid scaling and interpretive difficulties.

The one-tailed test that is a test of linkage.b ! 01

Ordinarily, . However, in the mul-ˆ ˆb /j ∼ t[df � (n � 2)]1 b1

tivariate case, this is not true, because the values in-a i

volve the estimation of more than two parameters. Amos
et al. (1990) showed that, at least in large samples, a
test statistic can be formulated that conservatively fol-
lows an F distribution with 2 and ( ) df. The ap-n � 3
proach that we took to this problem was to estimate
empirical thresholds corresponding to the 100a percen-
tile of the distribution of , via simulation under theˆ ˆb /j1 b1

null hypothesis. A result is considered significant when
the observed value of is less than Ta, where Ta isˆ ˆb /j1 b1

the value corresponding to the empirical estimate of the
100a percentile of the distribution of .ˆ ˆb /j1 b1

Evaluation of the Model’s Performance

To assess the utility of this approach, we conducted
extensive simulation studies. We began by simply deter-
mining whether our simulation software was performing
adequately, by simulating, via the Haseman-Elston re-
gression methods for correlated traits the type I error
rates for univariate linkage analyses. Simulations assum-
ing no locus effect but different residual correlations
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Figure 3 The effect of a second trait and marker distance on the power to detect linkage. The diagram depicts the power of proposed
bivariate mapping method to detect linkage as a function of the effect of a relevant locus on the second of two traits (the locus was assumed
to explain 25% of the variation of the first trait for all simulations). An allele frequency of 0.2 was assumed for all simulations. The residual
correlation between the traits was assumed to be 0.0, 0.5, or �0.5. A fully informative marker at distance of 1 cM from the trait locus was
assumed.

were performed, and empirical type I error rates were
estimated. Results are based on 1,000 simulations, with
sample sizes of 25–500 sib pairs and with one-tailed a

levels of .200–.01. These results are given in table 1.
Given 1,000 simulations per parameter set, the standard
error of the estimated type I and type II error rates (be-
low) are always X.0158. As can be seen, the empirical
critical values correspond almost exactly to the theoret-
ical critical values, and the observed error rates corre-
spond almost exactly to the theoretical error rates. Thus,
our software appears to be functioning properly.

We then simulated data under the null hypothesis of
no linkage and conducted a bivariate linkage analysis
(eq. [1]). We conducted these simulations with residual
correlations, among the two traits, of �.5, .0, and .5.
As can be seen in tables 2, the critical value estimated
in the simulations is uniformly higher than the critical
value needed in a univariate analysis. This is to be ex-
pected, given the extra parameter being estimated. It is
apparent that, if bivariate linkage analyses were con-
ducted and if one naively used the critical values for a
univariate test, then one’s actual type I error rate would

be approximately two to six times greater than the nom-
inal a level.

Next we simulated data under the alternative hy-
pothesis for dominant, additive, and recessive models.
In each case, we assumed perfectly informative markers
and a recombination fraction of 0. We simulated with
cross-phenotype residual correlations of .5, .0, and �.5;
cross-sibling residual correlations of .0; sample sizes of
100 sibling pairs; QTL effects that explained 10%–25%
of the phenotypic variance; allele frequencies (for the
phenotype-increasing alleles) of .1 or .2; a residual var-
iance of 1.0 for each trait; and one-tailed a levels of .2,
.1, .05, and .01. The results are described in table 3. In
every situation, we generated locus effects that induced
a positive correlation between the traits. Thus, in many
instances, the locus-induced correlations were opposite
in sign to the residual correlation between the traits. This
is an extremely important aspect of the simulations, as
will be discussed below. As can be seen in table 3, in
every situation the power of the bivariate test is at least
equal to the power of univariate situation, apart from
very small differences due to sampling variability. Again,
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Figure 4 depicts the power of the proposed bivariate mapping method as a function of the distance (in cMs) between the marker locus
and the trait locus. The trait locus was assumed to explain 33% of each of the two traits’ variance. An allele frequency of 0.5 was assumed
for all simulations. Fully informative markers were also assumed.

this is an expected result. However, what is clear and
more interesting is that the power of the bivariate model
is, in many situations, far greater than the power of the
univariate model. To illustrate this with just one strong
example, when a QTL explains 25% of the variance in
each of the two traits and acts additively with an allele
frequency (for the increasing allele) of .2, 100 sib pairs
yield only 42% power to detect each of the univariate
traits, even at the .20 a level, but yield 70% power in
the bivariate model.

Finally, to explore the performance of the model with
a more powerful (i.e., larger) sample and other circum-
stances, we conducted simulations with a sample size of
250 sibling pairs and an a level of .05. Again, 1,000
simulations for each situation were conducted. The re-
sidual correlation among the siblings was assumed to
be .0.

Figure 1 displays results examining the effect that the
residual correlation between two traits has on the power
to detect a major locus with pleiotropic effects on two
traits. For scenarios in which critical values were un-
known, 1,000 simulations assuming no locus effect but
an appropriate residual correlation were performed, and

critical values were estimated from the empirical distri-
bution of the test statistic obtained from these simula-
tions. A fully informative marker at a distance of 1 cM
from the trait locus was assumed. All simulations as-
sumed an allele frequency (for the increasing allele) of
.2. Two scenarios were investigated. One assumed that
the locus accounted for 50% of the variance of each
trait, and the other assumed that the locus accounted
for 25% of the variance. Figure 1 shows that the increase
in power with use of the bivariate model, relative to the
univariate model, depends strongly on the residual cor-
relation between the two traits. The lower (i.e., more
negative) the residual correlation, the greater the power.
In our simulations, the greatest power increase in the
multivariate model accrued when the residual correla-
tion was lowest. To again illustrate with a strong ex-
ample, when a QTL explains 25% of the variance in
each of the two traits with an allele frequency of .20
and when the residual correlation is �.75, 250 sib pairs
yield barely 30% power to detect each of the univariate
traits but yield 190% power in the bivariate model.

Figure 2 depicts the power of the proposed bivariate
mapping method, as a function of the effect that a locus
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Figure 5 depicts a “Mosaic” pleiotropy relationship among a
QTL and phenotypes X1 and X2.

Figure 6 depicts a “Relational” pleiotropy relationship among
a QTL and phenotypes X1 and X2.

has on two traits (i.e., the locus was assumed to influence
the two traits in an equivalent manner). Three scenarios
were investigated, each assuming a different residual cor-
relation between the two traits. Figure 2 shows the ex-
pected result–that is, that power increases as the pro-
portion of variance in each trait explained by the QTL
increases.

In figure 3, the effect that a second trait and marker
distance have on the power to detect linkage is por-
trayed. The figure depicts the power of the proposed
bivariate mapping method to detect linkage, as a func-
tion of the effect of a relevant locus on the second of
two traits (the locus was assumed to explain 25% of the
variation of the first trait, for all simulations). An allele
frequency of .2 was assumed for all simulations. The
residual correlation between the traits was assumed to
be .0, .5, or �.5. A fully informative marker at a distance
of 1 cM from the trait locus was assumed. Figure 3
shows the interesting result that the bivariate analysis
does not appear to increase power unless the QTL ex-
plains as much variance in the second trait as it does in
the first or the residual correlation between the two traits
is !0. Whether this result will hold up as a generality
or is specific to the circumstances that we simulated is
unclear.

Figure 4 depicts the power of the proposed bivariate
mapping method, as a function of the distance (in cM)
between the marker locus and the trait locus. The trait
locus was assumed to explain 33% of each of the two
traits’ variance. An allele frequency of .5 was assumed
for all simulations. The residual correlation between the
two traits was assumed to be .0, .5, or �.5. Fully in-
formative markers were also assumed. Figure 4 shows
the expected result—that is, that power drops off dra-
matically as the distance between the marker and QTL
increases but that the general pattern of results, in terms
of the power advantages of the bivariate approach, re-
mains unchanged.

Discussion

The model proposed has a number of advantages. It
is quite simple and flexible and can easily accommodate
covariates (as in the program SIBPAL; SAGE 1997) and
multiple linked loci (Elston 1995; Tiwari and Elston
1997). Similarly, other multivariate approaches (e.g., see
Eaves et al. 1996) could also accommodate these ad-
ditional features and, when considering the full covar-
iance structure among the siblings, may be even more
powerful (Fulker and Cherny 1996).

In this paper, we have considered only two pheno-
types. However, the model as formulated in equation (1)
is obviously expandable to a theoretically unlimited
number of phenotypes. In practice, the grid-search ap-
proach to derivation of the a coefficients for more than
two phenotypes would involve a greater computational
demand as the number of phenotypes increases. For ex-
ample, for three phenotypes, one would fix the level of
a1 and then would conduct a grid search in which a2

varied from 0 to while a3 is set to .1 � a 1 � a � a1 2 1

This would then be repeated over the entire range of
potential a1 values (i.e., for to ). Althougha � 0 a � 11 1

this is conceptually simple, it could become computa-
tionally intense. Therefore, as one moves to an increasing
number of phenotypes, a minimization procedure that
is more efficient than the grid search might be employed.
In this context, it is noteworthy that many variance-
component models are now becoming available that can
accommodate multiple phenotypes and that may be de-
sirable in this context (Almasy and Blangero 1988).

We have shown that the required critical values of the
test statistic depend on the residual correlation. In prac-
tice, the residual correlations among the traits are un-
known. This problem in easily solved by pointing out
that, under the null hypothesis, the phenotypic corre-
lations are the residual correlations. Therefore, the phe-
notypic correlations can be used as estimates of the re-
sidual correlations. The investigators must then simulate
their own critical values, given the presumed residual
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Figure 7 depicts a relationship among a QTL and phenotypes
X1 and X2 with exogenous phenotype.

Figure 8 depicts a relationship among a QTL and phenotypes
X1 and X2 with correlated phenotype.

correlations. This method of estimating the null distri-
bution of a test statistic—that is, on the basis of simu-
lation in a population with parameters set equal to the
corresponding observed sample statistics—is widely used
in simulation-based inference (Ott 1989; Schork et al.
1990; Churchill and Deorge 1994; Deorge and Churchill
1996).

Correlations among phenotypes can arise from several
different causal processes, and these different causal pro-
cesses may have different implications for the power and
conduct of multivariate linkage analysis. Figures 5–79
graphically display five different models involving a QTL
and two phenotypes of interest, labeled “X1” and “X2.”
In model 1, X1 and X2 are both functions of the QTL;
this is both the situation that the multivariate simula-
tions conducted herein represent and the situation that
Boomsma (1996) simulated. In keeping with Hadorn (as
cited in Rieger et al. 1991), we refer to this situation as
“‘mosaic’ pleiotropy.” In this case, substantial power can
be gained by conducting a multivariate linkage analysis,
as we and Boomsma (1996) have shown.

Model 2, in Hadorn’s (as cited in Rieger et al. 1991)
terminology, is an example of “relational” pleiotropy.
Here, QTL directly impacts X1, and X1 in turn directly
impacts X2. Including X1 and X2, as depicted in figure
6, simultaneously within the multivariate linkage anal-
ysis that we have constructed may not add additional
power above and beyond that associated with X1 alone,
unless the residual correlation between X1 and X2 is
strong and opposite to the linked-locus–induced corre-
lation. However, if X2 is caused by a “true” X1 that is
only observable with error and if that error is large (rel-
ative to total variance) in comparison with the error in
the observed X2 (relative to the total variance in X2),
then inclusion of X2 within in a bivariate analysis may
increase power.

Model 3 depicts the situation in which X2 might be
termed an “exogenous” variable (Neale and Cardon
1992). Here, both the QTL and X2 exert a causal influ-
ence on X1. However, the QTL does not influence X2.

In this situation, addition of X2 to the linkage analysis
as an additional variable might also increase power, as
might inclusion of X2 as a covariate on the right side of
the equations.

Distinguishing among these models will allow one to
decide whether it is best to include X2 as an additional
phenotype in the linkage analysis or as a covariate. One
may have strong theoretical reasons for including an
additional variable in the analysis—for example, that it
is known to be physiologically related to the primary
phenotype. Alternatively, an empirical approach may be
superior. In other words, one might wish to try a model
that has X2 as a covariate and then try a model that has
X2 as an additional dependent variable. A decision rule
might then be constructed to decide which model is best.
It might be that the better-fitting model (i.e., that with
the smaller P value) would indicate the more probable
mode of action of the covariate. However, such multiple
model fitting might warrant additional adjustments to
the per-test a level chosen.

Model 4 depicts the situation in which X1 and X2 are
correlated because each is influenced by an additional
variable, Z. However, Z is not observed. In this case, as
indicated above, including X2 as an additional variable
will probably not increase power, unless there is more
error of measurement (relative to total variance) in X1

than in X2. However, using X2 as a covariate may well
be better. This is because X2 may act as a poor proxy
for Z and, therefore, will be a useful covariate. However,
it seems to be unlikely to be as good a covariate as X2

was in model 3.
Finally, in model 5, X2 is an intermediary phenotype

between the QTL and X1. Here, including X1 as a covari-
ate would probably work against one’s purposes and
markedly reduce power. However, including X2 within
the model as an additional phenotype should markedly
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Figure 9 depicts a relationship among a QTL and phenotypes
X1 and X2. With intermediate phenotype.

increase power. Obviously, further studies that specifi-
cally model these five situations are called for.

Two important results of our analyses deserve further
emphasis. First, the greatest power increases occur when
the locus-induced correlation is opposite in sign to the
correlation induced by “residual” factors. This finding
is consistent with the analytic results of Jiang and Zeng
(1995). This result has important implications for map-
ping studies, since one will never know a priori whether
a locus will induce a correlation between variables that
is opposite to the residual correlation. This fact provides
further motivation for an “empirical” approach, in
which variables are tested to see whether they increase
evidence for linkage. Second, the power of our approach
in the bivariate setting is virtually always greater than
or equal to the power in the univariate setting. This is
due to the fact that, when a1 or a2 is 0.0, the model
reduces to the univariate Haseman-Elston procedure. As
such, our procedure can be used as a general screening
tool (as long as relevant critical values are determined),
without a tremendous cost in terms of type I and type
II error rates.

Another issue that demands emphasis is the distinction
between using multivariate data to increase mapping
power (due to, e.g., pleiotropy of the mapped locus) and
testing for pleiotropy. This article has considered meth-
ods for increasing the mapping power. Further work on
tests for pleiotropy is needed.

In conclusion, this article has shown that, under many
circumstances, modeling multiple phenotypes in a single
linkage analysis simultaneously can markedly increase
power, compared with modeling of each phenotype sep-
arately. This same strategy should be extendible to other
existing linkage procedures based on variance compo-
nents (e.g., see Schork 1993; Fulker and Cherny 1996)
and may yield even more power.
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